Progress Toward Measles Elimination - Eastern Mediterranean Region, 2013-2019

James L. Goodson, MPH ${ }^{1}$; Nadia Teleb, MD, PhD^{2}; Hossam Ashmony ${ }^{2}$; Nasrin Musa, MD²; Amany Ghoniem, MMSc²; Quamrul Hassan, MPhil, MBBS ${ }^{2}$; Abdul Shakoor Waciqi, MD, PhD ${ }^{3}$; Mohammed Osama Mere, MBBS ${ }^{4}$; Muhammad Farid, MD ${ }^{5}$; Hanan Elhag Abdo Mukhtar, MD ${ }^{6}$; Javed Iqbal, MBBS, DPH ${ }^{7}$; James P. Alexander, Jr., MD ${ }^{1}$

In 1997, during the 41st session of the Regional Committee for the Eastern Mediterranean, the 21 countries in the World Health Organization (WHO) Eastern Mediterranean Region* (EMR) passed a resolution to eliminate ${ }^{\dagger}$ measles (1). In 2015, this goal was included as a priority in the Eastern Mediterranean Vaccine Action Plan 2016-2020 (EMVAP) (2), endorsed at the 62 nd session of the Regional Committee (3). To achieve this goal, the WHO Regional Office for the Eastern Mediterranean developed a four-pronged strategy: 1) achieve $\geq 95 \%$ vaccination coverage with the first dose of measles-containing vaccine (MCV1) among children in every district of each country through routine immunization services; 2) achieve $\geq 95 \%$ vaccination coverage with a second MCV dose (MCV2) in every district of each country either through implementation of a routine 2 -dose vaccination schedule or through supplementary immunization activities ${ }^{\S}$ (SIAs); 3) conduct high-quality, case-based surveillance in all countries; and 4) provide optimal measles clinical case management, including dietary supplementation with vitamin A (4). This report describes progress toward measles elimination in EMR during 2013-2019 and updates a previous report (5). Estimated MCV1 coverage increased from 79\% in 2013 to 82% in 2018. MCV2 coverage increased from 59\% in 2013 to 74% in 2018. In addition, during 2013-2019, approximately 326.4 million children received MCV during SIAs. Reported confirmed measles incidence increased from 33.5 per 1 million persons in 2013 to 91.2 in 2018, with large outbreaks occurring

[^0]in Pakistan, Somalia, and Yemen; incidence decreased to 23.3 in 2019. In 2019, the rate of discarded nonmeasles cases was 5.4 per 100,000 population. To achieve measles elimination in the EMR, increased visibility of efforts to achieve the measles elimination goal is critically needed, as are sustained and predictable investments to increase MCV1 and MCV2 coverage, conduct high-quality SIAs, and reach populations at risk for not accessing immunization services or living in areas with civil strife.

Immunization Activities

MCV1 and MCV2 administrative coverage** data are reported each year from all EMR countries and areas to WHO and the United Nations Children's Fund (UNICEF) through the Joint Reporting Form. WHO and UNICEF use reported administrative coverage and available survey results to generate annual estimates of vaccination coverage through routine immunization services (G). During 2013-2018, estimated regional MCV1 coverage increased from 79% to 82%, and estimated MCV2 coverage increased from 59% to 74% (Table 1). In 2018, 11 (52%) of 21 countries and areas achieved $\geq 95 \%$ coverage with both MCV1 and MCV2. As of 2018, only one (5\%) EMR country (Somalia) had not yet introduced MCV2. During 2013-2019, 326.4 million persons were vaccinated during 89 SIAs, with weighted regional SIA coverage of 98% (Table 2). Reported vaccination coverage was $\geq 90 \%$ in 25 (68%) of 37 nationwide SIAs, including $\geq 95 \%$ in 11 (30%).

Surveillance Activities

Case-based measles surveillance ${ }^{\dagger \dagger}$ data are reported monthly to WHO from all EMR countries except Somalia. In Somalia,

[^1]TABLE 1. Measles-containing vaccine (MCV) schedule, estimated coverage with the first and second doses of MCV,* number of confirmed measles cases, ${ }^{\dagger}$ and confirmed measles incidence, by country/area - World Health Organization (WHO) Eastern Mediterranean Region, 2013, 2018, and 2019

Country/Area			2013				2018				2019	
	MCV schedule ${ }^{\text {§ }}$		Coverage (\%)		No. of measles cases	Incidence**	Coverage (\%)		No. of measles cases	Incidence**	No. of measles cases	Incidence**
	$\begin{gathered} \text { Age-1st } \\ \text { dose } \\ \text { (mos) } \end{gathered}$	$\begin{aligned} & \text { Age-2nd } \\ & \text { dose } \\ & \text { (mos) } \end{aligned}$	MCV1	MCV2			MCV1	MCV2				
Afghanistan	9	18	57	35	430	13.3	64	39	2,012	54.1	183	4.8
Bahrain	12	18	99	99	0	0.0	99	99	0	0.0	0	0.0
Djibouti	9	15	80	82	28	31.7	86	81	28	29.2	NR	NR
Egypt	12	18	96	96	405	4.6	94	94	23	0.2	0	0.0
Iran	12	18	98	97	189	2.5	99	98	203	2.5	0	0.0
Iraq	9	15	72	57	669	20.2	83	81	489	12.7	721	18.3
Jordan ${ }^{\dagger \dagger}$	12	18	97	98	120	14.1	92	96	0	0.0	45	4.5
Kuwait§§	12	24	99	99	62	17.6	99	99	34	8.2	12	2.9
Lebanon ${ }^{\dagger \dagger}$	12	18	82	65	1,761	297.8	82	63	943	137.5	1,069	155.9
Libya	12	18	96	95	164	25.9	97	96	1,059	158.6	188	27.7
Morocco	9	18	99	NA§§	92	2.7	99	99	8	0.2	12	0.3
Oman	12	18	99	99	0	0.0	99	99	0	0.0	0	0.0
Pakistan	9	15	68	43	8,749	45.7	76	67	33,007	155.5	2,066	9.5
Palestine	12	18	99	98	0	0.0	99	99	0	0.0	163	32.7
Qatar	12	18	97	99	73	31.2	99	95	2	0.7	5	1.8
Saudi Arabia ${ }^{\dagger+, \S \S}$	12	18	98	99	1,164	38.7	98	97	1,161	34.4	956	27.9
Somalia	9	NA ${ }^{\text {919 }}$	46	NA ${ }^{\text {99] }}$	3,173	242.9	46	NA ${ }^{\text {¢9 }}$	9,124	607.9	4,482	290.2
Sudan	9	18	86	57	2,813	75.9	88	72	4,980	119.1	3,555	83.0
Syria	12	18	58	51	740	37.8	63	54	329	19.4	27	1.6
Tunisia	12	18	94	98	16	1.5	96	99	12	1.0	1,870	159.9
United Arab Emirates ${ }^{\S \S}$	12	18	98	98	309	33.6	99	99	172	17.9	186	19.0
Yemen	9	18	70	47	400	15.9	64	46	10,640	373.4	1,163	39.9
EMR	-	-	79	59	21,357	33.5	82	74	64,226	91.2	16,703	23.3

Abbreviations: EMR = Eastern Mediterranean Region; MCV = measles-containing vaccine; MCV1 = first MCV dose; MCV2 = second MCV dose; NA = not applicable; NR = not reported.

* WHO and United Nations Children's Fund Estimates of National Immunization Coverage (WUENIC). For MCV1, among children aged 1 year or, if MCV1 is given at age ≥ 1 year, among children aged 24 months. For MCV2, among children at the recommended age for administration of MCV2, per the national immunization schedule. The WUENIC were last revised on July 15, 2019, and are available at https://www.who.int/immunization/monitoring_surveillance/data/en.
† Includes cases confirmed by laboratory or epidemiologic linkage and clinically compatible cases. Clinically compatible cases met the WHO measles clinical case definition, had no adequate specimen collected, and could not be epidemiologically linked to a laboratory-confirmed case of measles.
\S MCV schedule is the 2019 schedule.
ๆ 2019 MCV1 and MCV2 coverage estimates not available at time of publication.
** Cases per million population.
${ }^{\dagger \dagger}$ Additional 9-month dose provided nationally.
${ }^{\S \S}$ Additional dose provided nationally at age 5-6 years (United Arab Emirates), 6 years (Saudi Arabia), or 12 years (Kuwait).
ๆโ Dose was not included in the vaccination schedule for that year.
measles surveillance changed in 2014 from case-based surveillance with laboratory testing of a limited number of cases at hospitals in two regions to aggregate reporting ${ }^{\$ \$}$ of clinically compatible cases, without complete case investigations of each case, in all regions. The WHO Global Measles and Rubella Laboratory Network supports surveillance by providing laboratory confirmation and genotyping of reported cases (7). Measles virus genotypes are reported to the WHO global measles nucleotide surveillance database (8). Suspected measles cases are confirmed based on laboratory findings, an epidemiologic link, or clinical criteria. Case-based measles surveillance in EMR countries and areas is monitored using important

[^2]surveillance performance indicators 9 including 1) the number of suspected measles cases ultimately discarded as nonmeasles (target $=$ two or more per 100,000 population); 2) the proportion of second-level units (e.g., districts) with two or more discarded cases per 100,000 (target $=80 \%$); 3) suspected cases

[^3]TABLE 2. Characteristics of measles supplementary immunization activities (SIAs),* by year and country/area - World Health Organization Eastern Mediterranean Region, 2013-2019

Year	Country/Area	Age group targeted ${ }^{\dagger}$	Measles-containing vaccine used	Extent of SIA	Population reached in targeted age group, no. (\%)
2013	Afghanistan	$9 \mathrm{~m}-59 \mathrm{~m}$	M	Subnational	875,874 (85)
	Iran	9m-12y	MMR	Subnational	157,000 (97)
	Iraq	$6 \mathrm{y}-12 \mathrm{y}$	M	National	5,563,532 (96)
	Jordan	9m-14y	M	Subnational	639,420 (>100)
	Jordan	$9 \mathrm{~m}-14 \mathrm{y}$	MR	National	3,361,516 (>100)
	Lebanon	$9 \mathrm{~m}-18 \mathrm{y}$	M	Subnational	294,079 (85)
	Lebanon	9m-18y	M	Subnational	308,438 (76)
	Morocco	9m-19y	MR	National	10,191,571 (91)
	Pakistan	9m-9y	M	Subnational	4,002,154 (>100)
	Pakistan	$6 \mathrm{~m}-9 \mathrm{y}$	M	Subnational	26,986,015 (96)
	Somalia	9m-59m	M	Subnational	923,580 (90)
	Sudan	9m-15y	M	National	14,976,050 (98)
	Syria	$6 \mathrm{y}-10 \mathrm{y}$	MMR	National	789,678 (72)
	Syria	$12 y-15 y$	MMR	National	759,427 (92)
	Yemen	$6 \mathrm{~m}-10 \mathrm{y}$	M	Subnational	283,687 (93)
2014	Afghanistan	$6 \mathrm{~m}-10 \mathrm{y}$	M	Subnational	321,750 (92)
	Afghanistan	$9 \mathrm{~m}-59 \mathrm{~m}$	M	Subnational	520,384 (95)
	Iraq	$9 \mathrm{~m}-59 \mathrm{~m}$	M	National	3,295,122 (96)
	Lebanon	$9 \mathrm{~m}-18 \mathrm{y}$	MR	National	1,056,830 (72)
	Pakistan	$6 \mathrm{~m}-9 \mathrm{y}$	M	Subnational	9,432,492 (>100)
	Pakistan	$6 \mathrm{~m}-9 \mathrm{y}$	M	Subnational	14,026,013 (>100)
	Pakistan	$6 \mathrm{~m}-9 \mathrm{y}$	M	Subnational	1,439,892 (100)
	Somalia	9m-59m	M	Subnational	1,306,426 (88)
	Syria	7m-5y	MMR	National	766,305 (74)
	Yemen	9m-15y	MR	National	11,368,968 (93)
2015	Afghanistan	9-59m	M	National	6,191,955 (>100)
	Djibouti	9m-15y	M	National	277,119 (91)
	Djibouti	15y-25y	M	National	169,493 (76)
	Egypt	$9 \mathrm{~m}-10 \mathrm{y}$	MR	National	23,356,156 (>100)
	Iran	9m-15y	MR	Subnational	1,804,000 (99)
	Iraq	9m-5y	MR	National	4,499,656 (94)
	Pakistan	$6 \mathrm{~m}-10 \mathrm{y}$	M	Subnational	30,633,406 (>100)
	Pakistan	$6 \mathrm{~m}-10 \mathrm{y}$	M	Subnational	227,762 (95)
	Pakistan	$6 \mathrm{~m}-10 \mathrm{y}$	M	Subnational	204,308 (>100)
	Pakistan	$6 \mathrm{~m}-10 \mathrm{y}$	M	Subnational	3,512,771 (>100)
	Pakistan	$6 \mathrm{~m}-10 \mathrm{y}$	M	Subnational	413,695 (100)
	Pakistan	6m-10y	M	Subnational	1,519,242 (95)
	Somalia	9m-9y	M	Subnational	3,518,358 (91)
	Sudan	6m-15y	M	Subnational	1,026,990 (96)
	Sudan	6m-15y	M	Subnational	1,716,997 (>100)
	Sudan	6m-15y	M	Subnational	3,541,601 (100)
	Sudan	6m-15y	M	Subnational	3,078,800 (>100)
	Syria	6m-59m	MMR	National	1,619,630 (61)
	United Arab Emirates	1y-18y	MMR	National	915,480 (69)
	Yemen	$6 \mathrm{~m}-15 \mathrm{y}$	MR	Subnational	1,590,462 (85)
2016	Afghanistan	9m-10y	M	Subnational	2,450,393 (>100)
	Egypt	11y-20y	MR	Subnational	642,178 (94)
	Egypt	$6 y$	MR	Subnational	258,464 (>100)
	Iraq	$6 y$	MMR	Subnational	722,680 (>100)
	Qatar	$1 \mathrm{y}-13 \mathrm{y}$	MMR	National	166,145 (87)
	Somalia	9m-59m	M	National	602,136 (89)
	Somalia	9m-59m	M	Subnational	140,533 (74)
	Sudan	6m-15y	M	Subnational	4,383,506 (>100)
	Syria	$9 \mathrm{~m}-59 \mathrm{~m}$	MR	Subnational	927,820 (91)
	United Arab Emirates	19y-34y	MMR	National	581,519 (46)
	Yemen	6m-15y	MR	Subnational	2,421,243 (92)

See table footnotes on the next page.

TABLE 2. (Continued) Characteristics of measles supplementary immunization activities (SIAs),* by year and country/area - World Health Organization Eastern Mediterranean Region, 2013-2019

					Population reached in targeted
Year	Country/Area	Age group targeted ${ }^{\dagger}$	Measles-containing vaccine used	Extent of SIA	age group, no. (\%)

Abbreviations: EMR = Eastern Mediterranean Region; $M=$ measles vaccine; MMR = measles, mumps, and rubella vaccine; $M R=$ measles and rubella vaccine.

* SIAs generally are carried out using two approaches. An initial, nationwide catch-up SIA targets all children aged 9 months-14 years; it has the goal of eliminating susceptibility to measles in the general population. Periodic follow-up SIAs then target all children born since the last SIA. Follow-up SIAs generally are conducted nationwide every 2-4 years and generally target children aged 9-59 months; their goal is to eliminate any measles susceptibility that has developed in recent birth cohorts and to protect children who did not respond to the first measles vaccination. The exact age range for follow-up SIAs depends on the age-specific incidence of measles, coverage with measles-containing vaccine through routine services, and the time since the last SIA.
${ }^{\dagger}$ Targeted age groups varied by province.
§ Outbreak response immunization campaign that targeted children aged 6 months through 15 years and also young miners aged ≥ 15 years.
${ }^{\text {n }}$ Average SIA coverage, weighted by size of target population.
with adequate investigation ${ }^{* * *}$ (target $=80 \%$); 4) suspected cases with adequate blood specimens ${ }^{\dagger \dagger \dagger}$ (target $=80 \%$); and 5) laboratory results available <5 days after specimen receipt (target $=80 \%$).

[^4]During 2013-2019, the number of EMR countries and areas that met the target for suspected cases discarded as nonmeasles per 100,000 population at the national level increased from 14 (67%) to 18 (86%), and from seven (33%) to 11 (52\%) at the subnational level. From 2013 to 2019, the rate of discarded nonmeasles cases decreased from 6.4 per 100,000 population to 5.4 ; the percentage of suspected cases with adequate investigations increased from 76% to 86%; the percentage of suspected cases with adequate specimens collected for laboratory testing decreased from 85% to 70%, and the proportion of blood specimens received by the laboratory with results available in <5 days decreased from 86% to 66% (Supplementary Table, https://stacks.cdc.gov/view/cdc/86628). The declines in the

Summary

What is already known about this topic?
During 2008-2012, estimated first-dose coverage with measles-containing vaccine (MCV1) in the Eastern Mediterranean Region was 83\%; reported measles cases approximately tripled, from 12,196 to 36,456 , with large outbreaks in high-incidence countries.
What is added by this report?
Annual regional measles incidence increased from 33.5 per million population in 2013 to 91.2 in 2018, primarily because of large outbreaks in Pakistan, Somalia, and Yemen; then decreased to 23.3 in 2019.
What are the implications for public health practice?
To achieve measles elimination, efforts are needed to increase MCV1 and MCV2 coverage, conduct high-quality supplementary immunization activities, and reach populations at high risk for not accessing immunization services or living in areas with civil strife.
latter two performance indicators were largely because of the changes in Somalia's surveillance and a large-scale outbreak in Yemen during 2018-2019.

Measles Incidence and Genotypes

In EMR, reported measles cases decreased 74\% from 2013 to 2014, from 16,531 to a record low of 9,499; however, in 2015, 2017, and 2018, reported measles cases increased to 21,734, 34,286 and 64,198 , respectively, and then decreased to 16,703 in 2019 (Figure). Annual regional measles incidence per million population approximately tripled from 33.5 in 2013 to 91.2 in 2018, then decreased to 23.3 in 2019 (Table 1). The increase in measles cases during 2015-2018 occurred primarily because of large outbreaks in Somalia during 2015-2017, Pakistan during 2017-2018, and Yemen in 2018. The number of detected circulating measles virus genotypes in EMR decreased from four in 2013 (B3 in 13 countries, D4 in three countries, D8 in three countries, and H1 in one country) to two in 2019 (B3 in 15 countries and D8 in five countries).

Regional Verification of Measles Elimination

The EMR Verification Commission for Measles Elimination was established in February 2018 to evaluate the status of measles elimination in EMR countries based on documentation submitted annually by national verification committees. By the end of 2019, three (14\%) EMR countries (Bahrain, Iran, and Oman) were verified as having achieved measles elimination (9).

Discussion

During 2013-2018, both MCV1 and MCV2 coverage in EMR increased but remained 14 percentage points and 22 percentage points below the WHO-recommended level of $\geq 95 \%$. Although a few EMR countries have achieved and maintained measles elimination, large-scale measles outbreaks in others have revealed persistent suboptimal coverage with 2 doses of MCV through routine immunization services. In several EMR countries, major challenges to implementing measles elimination activities include civil unrest, armed conflict, and unpredictable mass population displacements and resettlements that can disrupt all aspects of planning and implementation of immunization services delivery, including SIAs. Conducting SIAs in areas with no local government requires building strong partnerships and close links with local communities. Implementing periodic SIAs according to WHO SIA guidelines (https://www.who.int/immuniza-tion/diseases/measles/SIA-Field-Guide.pdf) and using the WHO SIA readiness assessment tool (http://www9.who. int/immunization/diseases/measles/en/) to ensure a highquality activity that achieves $\geq 95 \%$ coverage, particularly in areas with complex humanitarian emergencies, requires the availability of adequate funds for vaccines and supplies, operational costs, and experienced personnel who can implement a complex activity in a culturally appropriate manner under challenging circumstances.
Measles elimination efforts can leverage assets, experience, and capacity from the Global Polio Eradication Initiative (GPEI). The Eastern Mediterranean Regional Technical Advisory Group on Immunization recommended forming a multipartner taskforce to apply lessons learned from the GPEI and address gaps in measles vaccination coverage. These include mapping areas where children who are missed by routine immunization services live, identifying reasons for being missed, and developing a strategic plan that includes allocation of necessary resources for implementation (10).
The findings in this report are subject to at least two limitations. First, administrative coverage might overestimate vaccination coverage through erroneous inclusion of SIA doses or doses administered to children outside target age groups, inaccurate estimates of the target population size, and inaccurate reports of the number of doses delivered. Second, surveillance data likely underestimate measles incidence because not all patients seek care, and not all measles cases in patients who seek care are reported.
To accelerate progress toward measles elimination in EMR, the visibility of efforts to achieve the measles elimination goal must be raised, including the benefits of achieving measles elimination. The new global guidance document to

FIGURE. Confirmed measles cases,* by month of rash onset — World Health Organization (WHO) Eastern Mediterranean Region, 2013-2019

* Confirmed and clinically compatible measles cases reported by countries and areas to WHO. A case of measles was laboratory-confirmed when measles-specific immunoglobulin M antibody was detected in serum or measles-specific RNA was detected by polymerase chain reaction in a person who was not vaccinated during the 30 days before rash onset. A case of measles was confirmed by epidemiologic linkage when linked in time and place to a laboratory-confirmed measles case but lacked serologic confirmation. During 2013-2019, a case of measles meeting the WHO case definition but without a specimen collected could be reported as clinically compatible.
be submitted for approval by the World Health Assembly in 2020 (the Immunization Agenda 2030: A Global Strategy to Leave No One Behind [IA2030]), ${ }^{\text {SS§ }}$ builds on lessons learned and progress made toward the Global Vaccine Action Plan goals and, importantly, identifies measles incidence as a signal for improving immunization services and strengthening primary health care systems. To achieve vaccination coverage and equity targets that leave no one behind and accelerate progress toward measles elimination and broader EMVAP and IA2030 goals, sustained and predictable investments and careful management of the leveraging of the substantial polio eradication infrastructure and resources are critically needed.

Corresponding author: James L. Goodson, fez9@cdc.gov.
${ }^{1}$ Global Immunization Division, Center for Global Health, CDC; ${ }^{2}$ Vaccine Preventable Diseases and Immunization, World Health Organization Eastern Mediterranean Regional Office, Egypt; ${ }^{3}$ Expanded Programme on Immunization, World Health Organization Country Office, Afghanistan; ${ }^{4}$ Expanded Programme on Immunization, World Health Organization Country Office, Pakistan; ${ }^{5}$ Expanded Programme on Immunization, World Health Organization Country Office, Somalia; ${ }^{6}$ Expanded Programme on Immunization, World Health Organization Country Office, Sudan; ${ }^{7}$ Expanded Programme on Immunization, World Health Organization Country Office, Yemen.
All authors have completed and submitted the International Committee of Medical Journal Editors form for disclosure of potential conflicts of interest. No potential conflicts of interest were disclosed.

[^5]
References

1. Regional Committee for the Eastern Mediterranean. Elimination and eradication of diseases, with special reference to measles and tuberculosis. Cairo, Egypt: World Health Organization, Regional Committee for the Eastern Mediterranean; 1997. http://applications.emro.who.int/docs/ em_rc44_r6_en.pdf?ua=1
2. Regional Office for the Eastern Mediterranean. Eastern Mediterranean vaccine action plan 2016-2020: a framework for implementation of the global vaccine action plan. Cairo, Egypt: World Health Organization, Regional Office for the Eastern Mediterranean; 2019.
3. Regional Committee for the Eastern Mediterranean Region. Annual report of the regional director for 2014. Cairo, Egypt: World Health Organization, Regional Committee for the Eastern Mediterranean; 2015. http://applications.emro.who.int/docs/ RC62_Resolutions_2015_R1_16570_EN.pdf
4. World Health Organization. Measles: disease control/elimination. Geneva, Switzerland: World Health Organization; 2020. http://www. emro.who.int/health-topics/measles/disaease-control-elimination.html
5. Teleb N, Lebo E, Ahmed H, et al. Progress toward measles eliminationEastern Mediterranean Region, 2008-2012. MMWR Morbid and Mortal Wkly Rep 2014;63:511-5. https://www.cdc.gov/mmwr/preview/ mmwrhtml/mm6323a3.htm
6. World Health Organization. Immunization, vaccines and biologicals. Data, statistics and graphics. Geneva, Switzerland: World Health Organization; 2020. https://www.who.int/immunization/monitoring_ surveillance/data/en/
7. World Health Organization. Regional Office for the Eastern Mediterranean. Field guidelines for surveillance of measles, rubella and congenital rubella syndrome. http://applications.emro.who.int/dsaf/ emropub_2011_1261.pdf
8. Brown KE, Rota PA, Goodson JL, et al. Genetic characterization of measles and rubella viruses detected through global measles and rubella elimination surveillance, 2016-2018. MMWR Morb Mortal Wkly Rep 2019;68:587-91. https://doi.org/10.15585/mmwr.mm6826a3
9. Teleb N, Atta H, Hajjeh R. Measles and rubella elimination in the Eastern Mediterranean Region: successes and challenges. East Mediterr Health J 2019;25:667-8. https://doi.org/10.26719/2019.25.10.667
10. Regional WHO. Office for the Eastern Mediterranean. Meeting of the Eastern Mediterranean Regional Technical Advisory Group (RTAG) on Immunization. Cairo, Egypt: World Health Organization, Regional Committee for the Eastern Mediterranean; 1997. http://applications. emro.who.int/docs/IC_Meet_Rep_2018_EN_17034.pdf?ua=1

[^0]: *The Eastern Mediterranean Region, one of six regions of the World Health Organization, consists of 21 Member States and Palestine (West Bank and Gaza Strip), with a population of nearly 583 million persons. The member states include Afghanistan, Bahrain, Djibouti, Egypt, Iran, Iraq, Jordan, Kuwait, Lebanon, Libya, Morocco, Oman, Pakistan, Qatar, Saudi Arabia, Somalia, Sudan, Syria, Tunisia, United Arab Emirates, and Yemen.
 ${ }^{\dagger}$ Measles elimination is defined as the absence of endemic measles cases for a period of ≥ 12 months, in the presence of adequate surveillance.
 $\$$ SIAs are immunization campaigns, typically carried out using two targeted age ranges. An initial, nationwide catch-up SIA targets all children aged 9 months-14 years, with the goal of eliminating measles susceptibility in the population. Periodic follow-up SIAs then target all children born since the last SIA. Follow-up SIAs generally are conducted every 2 to 4 years and target children aged 9-59 months; the goal of a follow-up SIA is to vaccinate children who have not received a first dose and to protect children who did not respond to the first dose of measles vaccine.

[^1]: I Suspected cases that have been investigated and determined not to be measles using laboratory testing in a proficient laboratory or epidemiologic linkage to a laboratory-confirmed outbreak of another communicable disease that is not measles are discarded as nonmeasles cases. A proficient laboratory is one that is WHO accredited or has an established quality assurance program with oversight by a WHO accredited laboratory.
 ** Administrative vaccination coverage is the number of vaccine doses administered divided by the estimated target population.
 ${ }^{\dagger} \dagger$ Case-based measles surveillance includes individual case investigation and blood specimen collection for laboratory testing.

[^2]: $\$ \$$ Aggregate measles surveillance involves a report of a summary of suspected measles cases, by age group and location (district), but does not include a line-listing of individual cases.

[^3]: IS Important surveillance performance indicators include 1) two or more discarded nonmeasles cases per 100,000 population at the national level per year; 2) two or more discarded nonmeasles cases per 100,000 per year in $\geq 80 \%$ of subnational administrative units; 3) adequate investigation of $\geq 80 \%$ of suspected measles cases conducted within 48 hours of notification; 4) adequate collection and testing in a proficient laboratory of specimens from $\geq 80 \%$ of suspected cases for detecting acute measles and rubella infection; 5) receipt of $\geq 80 \%$ of specimens at the laboratory within 5 days of collection; 6) report of $\geq 80 \%$ of serology results by the laboratory within 4 days of specimen receipt; and 7) on-time reporting of measles and rubella data to the national level by $\geq 80 \%$ of surveillance units.

[^4]: *** Adequate investigation is a case investigated within 48 hours of notification that includes all 10 core variables: 1) case identification; 2) date of birth/ age; 3) sex; 4) place of residence; 5) vaccination status or date of last vaccination; 6) date of rash onset; 7) date of notification; 8) date of investigation; 9) date of blood sample collection; and 10) place of infection or travel history.
 ${ }^{\dagger \dagger \dagger}$ An adequate blood specimen is a sample by venipuncture in a sterile tube with a volume of 5 ml for older children and adults and 1 ml for infants and younger children. Adequate samples for antibody detection are those collected within 28 days after onset of rash.

[^5]: $\mathbb{\$ S}$ https://www.who.int/immunization/immunization_agenda_2030/en/.

